

[AMD Public Use]

SECURITY ANALYSIS OF AMD PREDICTIVE STORE

FORWARDING
March 2021

[AMD Public Use]

DISCLAIMER
Any statements regarding security vulnerabilities or security features reflect AMD’s understanding at the time of the statement.
While AMD has taken care to prepare this document, it may contain technical inaccuracies, omissions, errors, and typographical
errors, and AMD is not liable for or under any obligation to update or otherwise correct this information. Any computer system
has risks of security vulnerabilities that cannot be completely prevented or mitigated. The information contained herein is for
informational purposes only, and is subject to change without notice. Advanced Micro Devices, Inc. makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use
of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of
Sale. ©2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2021 Advanced Micro Devices, Inc. All rights reserved.

[AMD Public Use]

INTRODUCTION
 AMD “Zen3” processors feature a new technology called Predictive Store Forwarding (PSF). PSF is a

hardware-based micro-architectural optimization designed to improve the performance of code execution by

predicting dependencies between loads and stores. Like technologies such as branch prediction, with PSF the

processor “guesses” what the result of a load is likely to be, and speculatively executes subsequent instructions. In

the event that the processor incorrectly speculated on the result of the load, it is designed to detect this and flush

the incorrect results from the CPU pipeline.

 Security research in recent years has examined the security implications of incorrect CPU speculation and

how in some cases it may lead to side channel attacks. For instance, conditional branch speculation, indirect branch

speculation, and store bypass speculation have been demonstrated to have the potential to be used in side-channel

attacks (e.g., Spectre v1, v2, and v4 respectively).

 This whitepaper describes the PSF feature, how it works, and associated potential security concerns. The

paper also includes information about hardware controls for disabling the feature when needed for security reasons,

and preliminary information about proposed Linux interfaces for those controls.

PREDICTIVE STORE FORWARDING
 It is common for a CPU to execute a load instruction to an address that was recently written by a store.

Many modern processors implement a technique known as Store-To-Load-Forwarding (STLF) to improve

performance in such cases. With STLF, data from the store is forwarded directly to the load without having to wait

for it to be written to memory. In a typical CPU, STLF occurs after the address of both the load and store are

calculated and determined to match.

 PSF expands on this by speculating on the relationship between loads and stores without waiting for the

address calculation to complete. With PSF, the CPU learns over time the relationship between loads and stores. If

STLF typically occurs between a particular store and load, the CPU will remember this. When the CPU sees the

store/load pair again, it may predict that STLF will occur and speculatively forward the data from the store to the

load. This is done before confirming that the store and load are in fact to the same address.

 In typical code, PSF provides a performance benefit by speculating on the load result and allowing later

instructions to begin execution sooner than they otherwise would be able to. Most of the time, the PSF prediction

is accurate. However, there are cases where the prediction may not be accurate and cause incorrect CPU

speculation.

CAUSES OF INCORRECT PSF
 Incorrect PSF predictions can occur due to at least the following two reasons. First, it is possible that the

store/load pair had a dependency for a while but later stops having a dependency. This can occur if the address of

either the store or load changes during the execution of the program.

 The second source of incorrect PSF predictions can occur if there is an alias in the PSF predictor structure.

The PSF predictor is designed to track stores/load pairs based on portions of their RIP. It is possible that a store/load

pair which does have a dependency may alias in the predictor with another store/load pair which does not. This

may result in incorrect speculation when the second store/load pair is executed.

[AMD Public Use]

EXAMPLE
 Consider the following exemplary C code and corresponding assembly.

void fn(int idx) {

 unsigned char v;

 idx_array[0] = 4096;

 v = array[idx_array[idx] * (idx)];

}

0000000000000a60 <fn>:

 a60: 48 8d 05 99 55 20 00 lea 0x205599(%rip),%rax # 206000 <idx_array>

 a67: 48 63 d7 movslq %edi,%rdx

 a6a: c7 05 8c 55 20 00 00 movl $0x1000,0x20558c(%rip) # 206000 <idx_array>

 a71: 10 00 00

 a74: 8b 04 90 mov (%rax,%rdx,4),%eax

 a77: 0f af f8 imul %eax,%edi

 a7a: 48 8d 05 7f 25 20 00 lea 0x20257f(%rip),%rax # 203000 <array>

 a81: 0f b6 04 38 movzbl (%rax,%rdi,1),%eax

 This function takes a parameter (idx) which in our example will either be 0 or 1. After setting idx_array[0]

the code then accesses idx_array[idx]. In this program, assume idx_array[] is initially all 0’s. Therefore, when this

function is called, it always results in accessing array[0]. This is because if idx=0 the function accesses

array[idx_array[0] * 0] = array[4096 * 0] = array[0], while if idx=1 the function accesses array[idx_array[1] * 1] =

array[0 * 1] = array[0].

 In the assembly code, there is a store at offset 0xa6a and a load at offset 0xa74. If idx=0 then this store and

load are to the same address and STLF will occur. However, if idx=1 then they are no longer to the same address.

 For AMD Zen3 processors with PSF, it is possible that the CPU could incorrectly predict that the store at

offset 0xa6a will forward to the load at 0xa74 even if idx=1. This may occur if the function was called many times

with idx=0 first, and then later called with idx=1. If this incorrect prediction occurs, the CPU will speculatively forward

the store data (4096) to the load at offset 0xa74. The CPU will then multiply this value by idx (1) and attempt a load

of array[4096].

 Note that architecturally, array[4096] is not accessed, but due to PSF, a speculative access to this index may

occur. This may be detected by later timing an access to this array index.

This simple example demonstrates how incorrect PSF speculation may occur in a detectable manner.

LIMITATIONS
 There are a number of limitations to the PSF feature and the speculation that may occur as a result of

incorrect PSF predictions.

TRAINING LIMITATIONS

[AMD Public Use]

 The PSF is limited to training about store/load dependencies within the same context. A context is defined

by the current values of CPL, ASID, PCID, CR3, and SMM status. Training only occurs if both the store and load

execute in the same context. Any time that any piece of the context state changes (e.g. system call) existing training

information is flushed. In particular, this flushing occurs on all far control transfers which includes all CPL changes,

system call and return, interrupt/exceptions, SMM entry/exit, and VM entry/exit.

 Note that the PSF predictor is partitioned amongst SMT threads so the activity of one SMT thread does not

influence the PSF predictions of the sibling thread.

 Finally, the store and load used to train the PSF must be relatively close together in the instruction stream

and there cannot be any pipeline flushes (such as due to a mis-predicted branch) between the store and the load.

SPECULATION LIMITATIONS
 As with the CPU speculation that occurs from branch mispredictions, speculation due to bad PSF predictions

occurs within the current process context. Speculative memory accesses performed are subject to standard paging

checks and only memory accessible in the current context and at the current privilege level may be speculatively

accessed. Speculation ceases if the processor encounters certain types of serializing operations such as LFENCE.

SECURITY ANALYSIS
 Previous research has shown that when CPUs speculate on non-architectural paths it can lead to the

potential of side channel attacks. In particular, programs that implement isolation, also known as ‘sandboxing’,

entirely in software may need to be concerned with incorrect CPU speculation, which can occur due to bad PSF

predictions.

 Because PSF speculation is limited to the current program context, the impact of bad PSF speculation is

similar to that of speculative store bypass (e.g., Spectre v4). In both cases, a security concern arises if code exists

that implements some kind of security control which can be bypassed when the CPU speculates incorrectly. This

may occur if a program (such as a web browser) hosts pieces of untrusted code and the untrusted code is able to

influence how the CPU speculates in other regions in a way that results in data leakage. This is similar to the security

risk with other Spectre-type attacks.

It is important to understand that because aliases may occur within the PSF structure, incorrect predictions

may occur on loads even if the load is not directly controllable by an attacker. If an attacker is able to run code

within a target application, they may be able to influence speculation on other loads within the same application by

purposely training the PSF predictor with malicious information.

As an example, consider a software sandbox that implements protection for Spectre v1 by masking an array

index before using it. An attacker may be able to construct a PSF alias so that the processor predicts the load of the

array mask to be an incorrect value, thus bypassing the Spectre v1 protection mechanism.

 On the other hand, isolation that is done using hardware mechanisms, such as separate address spaces,

may be considered safe from Spectre-style attacks including bad PSF speculation since PSF speculation cannot occur

across address spaces. It is important to note that PSF training also cannot occur across privilege domains since the

predictor structure is flushed on such changes. For example, user space code execution cannot influence PSF

predictions done in the kernel.

[AMD Public Use]

 Customers with software that implements sandboxing and are concerned about the PSF behavior on AMD

Zen3 processors may choose to disable the PSF functionality as described in the following section.

PREDICTIVE STORE FORWARDING CONTROLS

MSR CONTROLS
 There are two hardware control bits for the PSF feature:

• MSR 48h bit 2 – Speculative Store Bypass (SSBD)

• MSR 48h bit 7 – Predictive Store Forwarding Disable (PSFD) (NEW in Zen3)

The PSF feature is disabled if either of these bits are set. These bits are controllable on a per-thread basis

in an SMT system. By default, both SSBD and PSFD are 0 meaning that the speculation features are enabled.

While the SSBD bit disables PSF and speculative store bypass, PSFD only disables PSF. PSFD may be desirable

for software which is concerned with the speculative behavior of PSF but desires a smaller performance impact than

setting SSBD.

Support for PSFD is indicated in CPUID Fn8000_0008 EBX[28]. AMD processors that support PSF will also

support PSFD.

LINUX CONTROLS
 AMD has recently proposed Linux patches that enable control of the PSFD bit in MSR 48h. These patches

implement the following behavior:

Kernel Command Line Parameter Behavior

mitigations If ‘off’, PSFD is set to 0. If ‘auto’, PSFD is also set to 0
(same as SSBD)

nopsfd Sets PSFD to 0

psfd If ‘on’ PSFD is set to 1. If ‘off’ PSFD is set to 0

 Note that software that already uses pr_ctl to disable the PR_SPEC_STORE_BYPASS feature will be run with

SSBD=1 which effectively disables PSF.

CONCLUSION
 Predictive Store Forwarding is a new feature in AMD Zen3 CPUs which may improve application

performance but also has security implications. While AMD is not currently aware of any code that would be

considered vulnerable due to PSF behavior, this whitepaper examines the potential security implications of PSF, in

general, as well as mechanisms that are designed to disable the feature if desired. AMD believes that for most

applications, the security risk of PSF is likely low and where isolation is required, techniques such as address space

isolation are preferred over software sandboxing.

AMD recommends leaving the Predictive Store Forwarding feature enabled as the default setting.

