
printk: Why is it so complicated?

<john.ogness@linutronix.de>

Linux Plumbers Conference 2019
Lisbon, Portugal

LPC 2019 printk: Why is it so complicated? 1

Disclaimer

As of 2019-09-09, none of the rework code presented
here has been accepted for mainline Linux.

LPC 2019 printk: Why is it so complicated? 2

Requirements

Why is printk() so complicated?

Basic Requirements

called from any context
(including scheduler and NMI)
stores messages into a ringbuffer
(made available to users via syslog, /dev/kmsg, kmsg-dump)
pushes messages out to console(s)

Advanced Requirements

ringbuffer should not be missing any messages upon crash/hang
(requires synchronization with any other context, including NMI)
consoles should not have missed any messages upon crash/hang
(calls into console drivers that do … stuff)
should not interfere with normal operation
(example: inserting a USB stick should not cause latency spikes)

LPC 2019 printk: Why is it so complicated? 3

Requirements

Why is printk() so complicated?

”If it is part of printk, it is already implicitly on every line of code.” 1

1John Ogness, https://lkml.kernel.org/r/8736nyov8f.fsf@linutronix.de

LPC 2019 printk: Why is it so complicated? 4

A Brief History of printk

Linux 0.01 (1991-09) kernel/printk.c

static char buf[1024];

int printk(const char *fmt, ...)
{

va_list args;
int i;

va_start(args, fmt);
i=vsprintf(buf,fmt,args);
va_end(args);
__asm__("push %%fs\n\t"

"push %%ds\n\t"
"pop %%fs\n\t"
"pushl %0\n\t"
"pushl $_buf\n\t"
"pushl $0\n\t"
"call _tty_write\n\t"
"addl $8,%%esp\n\t"
"popl %0\n\t"
"pop %%fs"
::"r" (i):"ax","cx","dx");

return i;
}

LPC 2019 printk: Why is it so complicated? 5

A Brief History of printk

0.01/1991-09: direct synchronous printing to terminal
0.96a/1992-05: ringbuffer (4K), syslog, variable "log_wait"
0.99.7A/1993-03: variable "log_buf" (4K), console registration, upon

registration console prints existing ringbuffer
0.99.13k/1993-09: loglevels (encoded as "<level>" in messages)
0.99.14/1993-11: interrupts disabled for ringbuffer store and

console printing
2.1.31/1997-03: multiple console support, console write() callback, each

message printed synchronously to all registered consoles
2.1.80/1998-01: spinlock "console_lock", ringbuffer store and console

printing under spinlock
2.4.0/2000-10: bust_spinlocks(), re-init console_lock on crash/lockup
2.4.10/2001-08: variable "console_sem" (protects console driver system)

replaces "console_lock", variable "logbuf_lock" (protects
ringbuffer), variable "oops_in_progress" (re-inits
logbuf_lock and console_sem), call_console_drivers()
function, called with:
"logbuf_lock unlocked, irqs enabled, console_sem held",
call_console_drivers() called from release_console_sem(),
returns if console_sem held (printk now non-synchronous)

LPC 2019 printk: Why is it so complicated? 6

A Brief History of printk

2.5.51/2002-12: /dev/kmsg to printk from userspace
2.5.53/2002-12: do not console print if printk-CPU is not online
2.6.0/2003-10: variable "log_buf_len", kernel boot argument "log_bug_len",

dynamically allocating if larger than static buffer
2.6.11/2005-01: BKL changed to semaphore, now call_console_drivers() must be

called with interrupts disabled
2.6.12/2005-03: add timing information to messages
2.6.25/2008-01: do not allow printk to recurse (unless oops_in_progress),

stores last recursed message at the beginning of the
buffer to console print

2.6.26/2008-05: hide console printing latency from irq latency tracer
2.6.27/2008-08: add printk tick to wake syslog
2.6.32/2009-10: kmsg_dump interface
2.6.35/2010-05: support for dmesg from kdb
2.6.36/2010-06: trigger console printing when a CPU comes online
2.6.39/2011-03: add exclusive_console "feature" to avoid multiple messages
3.3/2012-02: for scheduler context store in a per-cpu (single message)

buffer, the next printk tick printk's it

LPC 2019 printk: Why is it so complicated? 7

A Brief History of printk

3.4/2012-05: re-implement ringbuffer with variable record structures and
sequence numbers, recursion messages stored in ringbuffer,
/dev/kmsg interface (read and write)

3.6/2012-07: change loglevel markers to SOH (start of header) character
3.7/2012-10: remove printk tick, use irq_work to trigger syslog waking
3.15/2014-06: for scheduler context store directly to ringbuffer, irq_work

now only console prints, report number of dropped messages
3.18/2014-06: add per-cpu printk function pointer for per-cpu diversion,

use a per-cpu nmi_seq_buf to dump backtraces from NMI then
call printk for all the nmi_seq_bufs

4.5/2016-01: allow scheduler to run between lines when console printing
(if console may schedule)

4.7/2016-05: flush NMI buffers to ringbuffer on panic
4.10/2016-12: safe buffers, per-cpu function replaced with per-cpu context

variable, used for NMI and recursion protection, flush safe
buffers to ringbuffer on panic, oops_in_progress no longer
used to force logbuf_lock/console_sem re-init

4.12/2017-04: store to ringbuffer from any context (if possible)
4.15/2018-01: add console owner/waiter logic to hand-off console printing
5.0/2019-02: finally clean LOG_CONT ordering based on caller identifier

LPC 2019 printk: Why is it so complicated? 8

Open Issues

ringbuffer protected by raw_spinlock
requires use of safe buffers for some contexts

safe buffers
bogus timestamps
relies on irq-work mechanism
cannot be sync’d on panic if CPUs do not go offline

console drivers
possibly very slow
all registered consoles called with interrupts disabled
interrupt latencies ”ignored”
unreliable in panic situation

LPC 2019 printk: Why is it so complicated? 9

Open Issues

pr_info() handled the same as pr_emerg()
users are forced to restrict loglevels to avoid system latencies

last console-owner pays the highest price

handing off console printing is great… unless you are the last one
not unbounded but it is a big wildcard for callers of printk()

oops_in_progress and bust_spinlocks()
we can do better than ignoring locking and hoping for the best

LPC 2019 printk: Why is it so complicated? 10

Main Issue: Tug-of-War

non-interference vs. reliability

”In the ultimate game of tug-of-war the only winningmove is not to pull.”

2

2CC BY-NC 2.5, Randall Munroe, https://what-if.xkcd.com/127

LPC 2019 printk: Why is it so complicated? 11

Main Issue: Tug-of-War

What does it mean ”not to pull”?

The two conflicting requirements can be differentiated:

what is being printk’d
when is it being printk’d

Split the problem into 2 problems (with 2 separate solutions):

non-interference: make printk fully preemptible
• all-context-safe ringbuffer
• per-console kthreads

reliability: provide an official synchronous channel for
important messages

• all-context-safe ringbuffer
• atomic consoles (synchronous printing)
• emergency messages (classified)

LPC 2019 printk: Why is it so complicated? 12

Ringbuffer (cpu-lock)

non-interference and reliability

Features
concurrent multi-readers and single writing CPU
supports all contexts
all record data stored contiguously
simple implementation3

Implementation

uses a CPU-reentrant spinlock (cpu-lock) to serialize writers4

uses logical positions to avoid ABA problem via tagged states

3see Appendix 1 for details
4see Appendix 2 for details

LPC 2019 printk: Why is it so complicated? 13

Ringbuffer (cpu-lock)

Concerns
the cpu-lock has a ”BKL feel” to it

• there can only be 1 in the system
• all NMI locking must be done under the cpu-lock

LPC 2019 printk: Why is it so complicated? 14

Ringbuffer (lockless)

non-interference and reliability

Features
truly lockless
concurrent multi-readers andmulti-writers
supports all contexts
raw record data stored contiguously

Implementation

uses descriptors to store meta-data of records
uses a numbered list (numlist) to sequence the records
uses a data ringbuffer (dataring) to manage raw record data
high-level printk-ringbuffer to provide a coherent reader/writer
interface to support the features of printk
uses node IDs and logical positions to avoid ABA problem via
tagged states

LPC 2019 printk: Why is it so complicated? 15

Ringbuffer (lockless)

Concerns
complex

• 3 different data structures5 (cooperating)
• multiple writer variables shared between CPUs (memory)
• 9 memory barrier pairs

difficult to document
• lacking formalized memory barrier documentation guidelines6

difficult to review
Is multi-writer support really necessary?

5see Appendix 3 for details
6see Appendix 4 for details

LPC 2019 printk: Why is it so complicated? 16

Per-Console kthreads

non-interference

Features
decouple printk() callers from the console
individual iterators per console

• let them go as fast as they can
• allowing fast consoles to run fast can also help reliability
(although any reliability would only be a bonus)

individual loglevels per console
• users could reduce printing for slow consoles and
increase it for fast ones

things like exclusive_console are solved automatically
• each console has its own iterator

LPC 2019 printk: Why is it so complicated? 17

Per-Console kthreads

Concerns
What about the console lock? (currently taken by printk callers)
Turn it into a rwlock where:

• console-kthreads are readers (multiple allowed)
• non-printk console lockers are writers (only 1 allowed)

• Who exactly are these console lockers and what are they doing?
• Could a per-console lock suffice?

• printk() callers will not care about the console lock
Can we rely on kthreads for console printing?

• the emergency messages and atomic consoles
solve the reliability problem

• if we can learn to ”stop pulling” on each other, we can focus our
energy on optimizing the two separate solutions

LPC 2019 printk: Why is it so complicated? 18

Atomic Consoles

reliability

Features
new console callback write_atomic()

• a safe early printk
synchronous printing

• ”back to the roots” of printk
• make the printk() caller do its own work
• ignores console lock
(synchronized at the console driver level using the cpu-lock)

only prints ”emergency messages”
allows console drivers to be preemptible for PREEMPT_RT

• no need to ”ignore” console printing latencies anymore
no need for special oops_in_progress handling or
bust_spinlocks()

LPC 2019 printk: Why is it so complicated? 19

Atomic Consoles

Concerns
Howmany console drivers could actually implement this?

• RFCv1 implemented 8250 UART as an example
the cpu-lock is needed for NMI safety

• the console callbacks write() and write_atomic()must
synchronize against each other

• most console drivers need locks for printing (even UARTs)
Can something be done for systems without atomic consoles?

• provide a special console that writes to predictable
memory addresses that may survive reboots

• print synchronously in non-atomic context (if it can be detected)
• on panic fallback to ”legacy” oops_in_progress/bust_spinlocks()
behavior (not possible with PREEMPT_RT)

LPC 2019 printk: Why is it so complicated? 20

Emergency Messages

reliability

Features
messages can be tagged for synchronous and
immediate console printing

Concerns
What is considered important?
Should developers decide what an emergency message is?

• BUG(), WARN(), oops, panic
• console drivers decide based on some criteria/configuration

Should users decide?
• based on a loglevel threshold

LPC 2019 printk: Why is it so complicated? 21

Status (until now)

work began 13 Feb 2018
• with behind-the-scenes support from Peter Zĳlstra,
Thomas Gleixner, Steven Rostedt

presented ”in progress” work at ELCE 2018 RT-Summit 25 Oct 2018
• general feedback positive

RFCv1 posted 12 Feb 2019
• ringbuffer (cpu-lock), console printing thread, emergency messages,
atomic consoles (with 8250 UART implementation)

• feedback: poorly documented, too many changes at once,
too many controversial changes

• agreed upon a general roadmap to proceed
• integrated into PREEMPT_RT since Linux 5.0.3-rt1

RFCv2 posted 7 Jun 2019
• only includes a ringbuffer (lockless) and test module
• feedback: poorly documented, too complex, too monolithic

RFCv3 posted 27 Jul 2019
• ringbuffer from RFCv2 completely refactored
(implementing numlist and dataring) and re-documented

RFCv4 posted 8 Aug 2019
• includes ringbuffer from RFCv3 and replaces ringbuffer in printk.c
• feedback: possibly over-documented, still too complex

LPC 2019 printk: Why is it so complicated? 22

Status (looking forward)

1 replace the mainline ringbuffer
• decide which ringbuffer to use!
• keep logbuf_lock (for now)
• (for lockless) refactor the code for simplification
• (for lockless) formalize memory barrier comments

2 implement an NMI-safe LOG_CONT
3 remove logbuf_lock
4 remove safe buffers

• allow 1 level of printk recursion?
5 implement per-console kthreads

• possibly as optional mode of operation (like threadirqs now)
6 implement emergency messages

• determine how emergency messages are classified
7 implement write_atomic() for 8250 UART driver

• sort out cpu-lock concerns

NOTE: Code for nearly all of this was posted in RFCv1. Although it may not be
suitable ”as is”, it functions quite well as a working prototype that
already tackles the hard problems and can be tested in various scenarios.

LPC 2019 printk: Why is it so complicated? 23

Thank You

Many thanks to Petr Mladek, Peter Zĳlstra,
Sergey Senozhatsky, Andrea Parri, Thomas Gleixner,
Linus Torvalds, and Greg Kroah-Hartman for
positive and enlightening discussions!

Special thanks to the Linux Foundation for supporting
our efforts to bring PREEMPT_RT mainline.

LPC 2019 printk: Why is it so complicated? 24

Questions / Comments

Thank you for your attention!

<john.ogness@linutronix.de>

LPC 2019 printk: Why is it so complicated? 25

A.1 Ringbuffer (cpu-lock)

Implementation

The cpu-lock ringbuffer works as follows:
all operations (reserve/commit/free) are performed under the
cpu-lock
sequence numbers are assigned by the task/context that took
ownership of the cpu-lock
readers can only see records between the tail and head

The following slides show the steps when adding and removing records
for the cpu-lock ringbuffer.

LPC 2019 printk: Why is it so complicated? 26

A.1 Ringbuffer (cpu-lock)

Steps of adding a record to the ringbuffer:

1. The ringbuffer initially contains 3 records.

3. Assuming an NMI interrupt occurred,
space for another record is reserved. This
record is committed in NMI context, even
though it does not yet have a sequence
number.

2. Space for a new record is reserved by
setting the reserve pointer using
cmpxchg().

4. Upon commit of the first reserved space,
the sequence numbers for all records up
until the reserved pointer are set. The head
pointer is updated using cmpxchg().

LPC 2019 printk: Why is it so complicated? 27

A.1 Ringbuffer (cpu-lock)

Steps of removing a record from the ringbuffer:

1. The dataring initially contains 5 records. 2. The tail is set to record 4 using
cmpxchg().

LPC 2019 printk: Why is it so complicated? 28

A.2 CPU-Lock

Implementation

The cpu-lock is a CPU-reentrant spinlock. It works by:
tracking which CPU currently owns the cpu-lock
if a CPU already owns the lock, the lock function just returns
each task/context tracks if it was the one to take ownership initially
if a task/context did not take ownership, the unlock function just
returns

The following slide shows the implementation of the cpu-lock.

LPC 2019 printk: Why is it so complicated? 29

A.2 CPU-Lock

void prb_lock(struct prb_cpulock *cpu_lock,
unsigned int *cpu_store)

{
unsigned long *flags;
unsigned int cpu;
for (;;) {

cpu = get_cpu();
*cpu_store = atomic_read(&cpu_lock->owner);
if (*cpu_store == -1) {

flags = per_cpu_ptr(cpu_lock->irqflags, cpu);
local_irq_save(*flags);
if (atomic_try_cmpxchg_acquire(&cpu_lock->owner,

cpu_store, cpu)) {
/* this CPU now owner */
return;

}
local_irq_restore(*flags);

} else if (*cpu_store == cpu) {
/* this CPU is already owner */
return;

}
put_cpu();
cpu_relax();

}
}

struct prb_cpulock {
atomic_t owner;
unsigned long __percpu *irqflags;

};

void prb_unlock(struct prb_cpulock *cpu_lock,
unsigned int cpu_store)

{
unsigned long *flags;
unsigned int cpu;
cpu = atomic_read(&cpu_lock->owner);
atomic_set_release(&cpu_lock->owner, cpu_store);
if (cpu_store == -1) {

flags = per_cpu_ptr(cpu_lock->irqflags, cpu);
local_irq_restore(*flags);

}
put_cpu();

}

LPC 2019 printk: Why is it so complicated? 30

A.3 Ringbuffer (lockless)

Internal Data Structures
The printk-ringbuffer is composed of:

numlist
• manages the list of committed records
• always sorted based on sequence numbers

dataring
• manages raw record data
• sorted based on reserve order (not relevant)

The following slides show the steps when
adding and removing records for the
numlist and dataring structures. After
that, a slide shows some example relational
scenarios between the numlist and
dataring.

LPC 2019 printk: Why is it so complicated? 31

A.3 Ringbuffer (lockless)

Steps of adding a node (record) to the numlist (committed list):

1. The committed list initially contains 3
records. Record 5 is the terminating record.

3. The head is set to record 6 using
cmpxchg().

2. A new node (record 6) is setup as
terminating.

4. The next of record 5 is set to point to
record 6.

LPC 2019 printk: Why is it so complicated? 32

A.3 Ringbuffer (lockless)

Steps of removing a node (record) from the numlist
(committed list):

1. The committed list initially contains 4
records. Record 3 is the oldest record.

3. Record 3 was successfully removed and
can be recycled.

2. If record 3 is not pointing to valid data,
the tail is set to record 4 using cmpxchg().

LPC 2019 printk: Why is it so complicated? 33

A.3 Ringbuffer (lockless)

Steps of adding a datablock (record) to the dataring:

1. The dataring initially contains 3 records.
Record 5 is the newest, record 3 the oldest.

3. The newly reserved datablock is initially
set with the wrong ID (5) until the writer
commits the data.

2. A datablock (record 6) is reserved by
setting the head using cmpxchg().

4. Upon committing, the datablock is set
with the correct ID (6). Now it can be
removed.

LPC 2019 printk: Why is it so complicated? 34

A.3 Ringbuffer (lockless)

Steps of removing a datablock (record) from the dataring:

1. The dataring initially contains 4 records.
Record 6 is the newest, record 3 the oldest.
But record 5 will be removed.

2. If datablock 5 points to a valid record, the
tail is set to record 3 using cmpxchg().

LPC 2019 printk: Why is it so complicated? 35

A.3 Ringbuffer (lockless)

Different examples of numlist/dataring relations. 7

All 4 records (3, 4, 5, 6) belong to the
committed list (i.e. are visible to readers)
and point to valid data.

Records 3, 4, 5 are visible to readers,
however the data for record 5 has been
dropped. Record 6 has been reserved by a
writer, but not yet committed. The ID for its
data is purposely set to the wrong ID (5)
until it has been committed by the writer.

7For simplicity, the ID and the sequence number are shown to be the same.

LPC 2019 printk: Why is it so complicated? 36

A.4 Memory Barriers

Usage in the Ringbuffer (lockless)

splitting the ringbuffer into separate data structures helped to
simplify the barriers, but they are still quite complex
LKMM proofs performed using herd7 litmus tests
attempted to formally document the memory barriers
within the source code

• no formal guidelines exist (yet?)

The following slide shows an example of using a litmus test to verify the
memory barriers. The slide after that shows an example of trying to
formalize the documentation of such memory barriers.

LPC 2019 printk: Why is it so complicated? 37

A.4 Memory Barriers

left column: pseudo code
right column: litmus test

void numlist_push(struct numlist *nl,
struct nl_node *n)

{
unsigned long head_id;
struct nl_node *head;
u64 seq;
head_id = READ_ONCE(nl->head_id);
head = to_node(nl, head_id);
seq = READ_ONCE(head->seq);
n->seq = seq + 1;
cmpxchg_release(&nl->head_id,

head_id, n->id);
}

The litmus test verifies that a pushed numlist
node will always have a sequence number that
is exactly +1 of the sequence number of the
previous node.

{
int node1 = 1;
int *nl_head = &node1;

}
P0(int **nl_head, int *node1, int *node2)
{

int r;
*node2 = 2;
r = cmpxchg_release(nl_head, node1, node2);

}
P1(int **nl_head)
{

int *head;
int seq;
head = READ_ONCE(*nl_head);
seq = READ_ONCE(*head);

}
exists (1:head=node2 /\ 1:seq!=2)
$ herd7 -conf linux-kernel.cfg seq_push.litmus
Test seq_push Allowed
States 2
1:head=node1; 1:seq=1;
1:head=node2; 1:seq=2;
No
Witnesses
Positive: 0 Negative: 2
Condition exists (1:head=node2 /\ not (1:seq=2))
Observation seq_push Never 0 2
Time seq_push 0.00
Hash=67e0375d84092a2f96833746fcff0500

LPC 2019 printk: Why is it so complicated? 38

A.4 Memory Barriers

void numlist_push(struct numlist *nl, struct nl_node *n, unsigned long id)
{

unsigned long head_id;
struct nl_node *head;
u64 seq;
/* LMM_TAG(A) */
head_id = READ_ONCE(nl->head_id);
head = to_node(nl, head_id);
/* LMM_TAG(B) */
seq = READ_ONCE(head->seq);
/*
* LMM_TAG(C)
* Set @n->seq to +1 of @seq from the previous head.
*
* If LMM_REF(numlist_push:A) reads from LMM_REF(numlist_push:D),
* then LMM_REF(numlist_push:B) reads from LMM_REF(numlist_push:C).
*
* Relies on:
* RELEASE from LMM_REF(numlist_push:C) to LMM_REF(numlist_push:D)
* matching
* ADDRESS DEP. from LMM_REF(numlist_push:A) to LMM_REF(numlist_push:B)
*/
n->seq = seq + 1;
/*
* LMM_TAG(D)
* Guarantee that @n->seq is stored before this node is visible
* to any pushing writers. It pairs with the address dependency
* between @head_id and @seq. See LMM_REF(numlist_push:C) for
* details.
*/
cmpxchg_release(&nl->head_id, head_id, id);

}

LPC 2019 printk: Why is it so complicated? 39

	printk
	Requirements
	A Brief History of printk
	Open Issues
	Main Issue: Tug-of-War
	Ringbuffer (cpu-lock)
	Ringbuffer (lockless)
	Per-Console kthreads
	Atomic Consoles
	Emergency Messages
	Status (until now)
	Status (looking forward)
	Thank You
	Questions / Comments
	A.1 Ringbuffer (cpu-lock)
	A.2 CPU-Lock
	A.3 Ringbuffer (lockless)
	A.4 Memory Barriers

