
NoRouter: instant multi-cluster & multi-
cloud container networking

Akihiro Suda, NTT

No routing configuration is required. No root privilege is required.

https://norouter.io

https://norouter.io/

What is NoRouter?

• Instant multi-cluster & multi-cloud networking for dev environments

• No public IP address is required

• No routing configuration is required

• No root privilege is required

• Just needs stdio (aka shell access)

2

https://norouter.io

https://norouter.io/

What is NoRouter?

3

Goals and Non-Goals

Goals
• Facilitate working with heterogeneous dev environments

e.g.,
• Kubernetes cluster1 on GPU-enabled rich cloud

• Kubernetes cluster2 on cheaper cloud

• On-premise baremetal IoT devices

• Laptop at home

4

Goals and Non-Goals

Goals
• UX

• Human-friendly CLI and YAML

• Security
• No need to sacrifice security with `docker run --privileged`

• Portability
• Mostly for Docker/Kubernetes containers, but not only for them

• Works with Docker, Podman, LXC, Kubernetes, SSH, and whatever, as long as stdio is available

5

Goals and Non-Goals

Non-Goals
• Production quality performance

• Approximately 350 Mbps at maximum, with two Docker containers on same host

• Fault-tolerance
• Could be achieved by running NoRouter with a distributed locker, e.g., Consul, though

6

Similar tools

• ssh –L , ssh –R
• Depends on SSH

• No connectivity across multiple remote hosts

7

Local

Remote

ssh -L

Local

Remote

ssh -R

Local

Remote

NoRouter

Remote 2

Similar tools

• VDE (Virtual Distributed Ethernet)
• Requires root to create TAP devices

(VDE itself doesn’t require the root)

• SLiRP (c. 1995)
• No connectivity across multiple remote hosts

8

This slide was updated after the recording

Demo: Laptop + GKE + AKS

Virtual network 127.0.42.0/24
• 127.0.42.100:8080: port 80 of the local laptop

• 127.0.42.101:8080: port 80 of “gkepod” on Kubernetes context “gke”

• 127.0.42.102:8080: port 80 of “akspod” on Kubernetes context “aks”

9

hosts:
laptop:

vip: "127.0.42.100"
gkepod:

vip: "127.0.42.101"
cmd: "kubectl --context=gke exec -i gkepod -- norouter"

akspod:
vip: "127.0.42.102"
cmd: "kubectl --context=aks exec -i akspod -- norouter"

hostTemplate:
ports: ["8080:127.0.0.1:80"]

GKE: Google Kubernetes Engine, AKS: Azure Kubernetes Service

How it works

• Each of the hosts has `norouter` binary

• NoRouter manager process (on local laptop)
launches NoRouter agent processes, e.g.,
`kubectl exec –i <POD> norouter`

• Agents send virtual L3 packets to the manager
via stdio, and the manager works like a switch

10
Manager

Agent Agent

How it works: Multi-loopback

• Challenge: How to create network devices without the root?

• TUN/TAP cannot be used because it requires the root (CAP_NET_ADMIN)

• Solution: Do not create devices at all

• NoRouter just uses the loopback interface with multiple IP addresses within
127.0.0.0/8
• e.g. 127.0.42.100, 127.0.42.101, …

11

How it works: Multi-loopback

12

How it works: TCP/IP stack

• TCP/IP is implemented in userspace using Netstack
• Originates from gVisor and Fuchsia

• Written in Go

• The current NoRouter implementation only supports TCP (v4)

• UDP support is on plan

13

How it works: Name resolution

• Challenge: /etc/{resolv.conf, hosts} cannot be modified without the root

• Solutions:
• $HOSTALIASES file (~/.norouter/agent/hostaliases)

› Similar to /etc/hosts but customizable without the root
› Not supported by all applications

• HTTP proxy mode
› NoRouter agent works as a HTTP proxy with built-in name resolver
› Best fit for typical HTTP applications

• SOCKS proxy mode
› Similar to HTTP proxy mode but SOCKS
› Supports both SOCKS4a and SOCKS5

14

VPN(-ish) using HTTP proxy mode

• HTTP proxy mode can be used as if
it is a “VPN”

• Accesses to “http://<PRIVATE-IP>.eu-
central-1.compute.internal” are routed
via `ssh aws_bastion`

• Same applies to Azure and GCP
addresses

15

hosts:
local:

vip: "127.0.42.100"
http:

listen: "127.0.0.1:18080"
aws_bastion:

cmd: "ssh aws_bastion -- norouter"
vip: "127.0.42.101"

azure_bastion:
cmd: "ssh azure_bastion -- norouter"
vip: "127.0.42.102"

gcp_bastion:
cmd: "ssh gcp_bastion -- norouter"
vip: "127.0.42.103"

routes:
- via: aws_bastion

to: ["*.compute.internal“]
- via: azure_bastion

to: ["*.internal.cloudapp.net“]
- via: gcp_bastion

to: ["*.example-123456.internal“]

How to get started

• Binaries are available for Linux, FreeBSD, NetBSD, OpenBSD, DragonFly BSD,
macOS, and Windows: https://github.com/norouter/norouter/releases

• `norouter show-example` shows an example YAML

• `norouter –e` opens $EDITOR with an example YAML

• Docs: https://norouter.io/docs/

16

https://github.com/norouter/norouter/releases
https://norouter.io/docs/

Future work

• Support UDP

• Support MASQUE (HTTP/3 VPN-ish)

• Support TUN/TAP (with root)

• Automatically generate mTLS certs with NoRouter virtual IP addresses

• …

17

Recap

• Instant multi-cluster & multi-cloud networking for dev environments

• No public IP address is required

• No routing configuration is required

• No root privilege is required

• Just needs stdio (aka shell access)

18

https://norouter.io

https://norouter.io/

