

More Than an Emulator
● Living documentation

– Device-based emulation
– Running original software
– Interactive debugger

● Preservation of digital heritage

Software is Culture
● Eligible for copyright protection
● Shared experiences
● Entertainment and storytelling medium

All Culture Needs to be Preserved
● Hopes and fears of a generation
● Window into a way of life
● Passing down memories
● Software is fragile

Dragging MAME into the 21st Century

Practicalities of a large open source
project with two decades of history

(this is not a technical talk)

Milestones
● Feb ’97: Multi-Pac becomes MAME
● Jun ’98: First MESS release
● Oct ’14: Source on GitHub
● May ’15: MAME absorbs MESS
● Mar ’16: GPL re-licensing completed

Rumours of Demise
● Systems no-one cares about
● MAME always gets slower
● Grumpy old men

Commit Activity

20
10

-0
1

20
10

-0
5

20
10

-0
9

20
11

-0
1

20
11

-0
5

20
11

-0
9

20
12

-0
1

20
12

-0
5

20
12

-0
9

20
13

-0
1

20
13

-0
5

20
13

-0
9

20
14

-0
1

20
14

-0
5

20
14

-0
9

20
15

-0
1

20
15

-0
5

20
15

-0
9

20
16

-0
1

20
16

-0
5

20
16

-0
9

20
17

-0
1

20
17

-0
5

20
17

-0
9

20
18

-0
1

20
18

-0
5

20
18

-0
9

20
19

-0
1

20
19

-0
5

20
19

-0
9

20
20

-0
1

20
20

-0
5

20
20

-0
9

0

200

400

600

800

1000

1200

Unique Authors

20
10

-0
1

20
10

-0
5

20
10

-0
9

20
11

-0
1

20
11

-0
5

20
11

-0
9

20
12

-0
1

20
12

-0
5

20
12

-0
9

20
13

-0
1

20
13

-0
5

20
13

-0
9

20
14

-0
1

20
14

-0
5

20
14

-0
9

20
15

-0
1

20
15

-0
5

20
15

-0
9

20
16

-0
1

20
16

-0
5

20
16

-0
9

20
17

-0
1

20
17

-0
5

20
17

-0
9

20
18

-0
1

20
18

-0
5

20
18

-0
9

20
19

-0
1

20
19

-0
5

20
19

-0
9

20
20

-0
1

20
20

-0
5

20
20

-0
9

0

100

200

300

400

500

600

Developers!
● MAME lives on active development
● Users follow development
● Inactive projects wither

Challenges
● MAME is mature

– Basic functionality is complete
– The easy stuff is done
– Decades of legacy
– Core changes are difficult

Challenges
● Constraints

– Working within MAME’s architecture
– Keeping up with core changes
– Single-system emulators are simpler
– MAME philosophy

Attractions
● Interesting challenges
● Nostalgia
● Not your day job
● Big device library

Scope
● MAME was exclusive

– Arcade video games only
– No gambling systems
– No low-effort bootlegs

Scope
● Proliferation of forks

– Duplicated effort
– Development silos

Scope
● Benefits of absorbing the forks

– More test cases
– Improvements benefit everyone
– Talent under one roof
– No need to choose a fork

Approachability
● Something for everyone

– Sourcing and dumping media
– Reporting emulation issues
– Layouts for non-video systems
– Documentation

Approachability
● Regular releases

– Users see progress faster
– Checkpoints for tracking regressions
– Infrequent releases are unwieldy

Approachability
● Public version control

– Frequent updates are easier to follow
– See changes as they happen
– Quicker community feedback

Approachability
● Transparent review process

– MAME had this wrong for years
– Everyone benefits from public feedback
– Tools can really help

Approachability
● Idiomatic code – before

static MACHINE_CONFIG_FRAGMENT(sound_2151)
MCFG_SPEAKER_STANDARD_MONO("mono")

MCFG_YM2151_ADD("ymsnd", XTAL_3_579545MHz)
MCFG_YM2151_IRQ_HANDLER(INPUTLINE("audiocpu", 0))
MCFG_SOUND_ROUTE(0, "mono", 0.50)
MCFG_SOUND_ROUTE(1, "mono", 0.50)

MCFG_OKIM6295_ADD("oki", XTAL_1MHz, OKIM6295_PIN7_HIGH)
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.60)

MACHINE_CONFIG_END

Approachability
● Idiomatic code – before

#define MCFG_YM2151_ADD(_tag, _clock) \
MCFG_DEVICE_ADD(_tag, YM2151, _clock)

#define MCFG_YM2151_IRQ_HANDLER(_devcb) \
devcb = &ym2151_device::set_irq_handler(\

*device, DEVCB_##_devcb);

#define MCFG_YM2151_PORT_WRITE_HANDLER(_devcb) \
devcb = &ym2151_device::set_port_write_handler(\

*device, DEVCB_##_devcb);

Approachability
● Idiomatic code – before

template <class Object>
static devcb_base &set_irq_handler(device_t &dev, Object obj) {

return downcast<ym2151_device &>(dev)
.m_irqhandler.set_callback(obj);

}

template <class Object>
static devcb_base &set_port_write_handler(device_t &dev, Object obj) {

return downcast<ym2151_device &>(dev)
.m_portwritehandler.set_callback(obj);

}

Approachability
● Idiomatic code – after

void dooyong_z80_state::sound_2151(machine_config &config) {
SPEAKER(config, "mono").front_center();

ym2151_device &ymsnd(YM2151(config, "ymsnd", 3.579'545_Mhz_XTAL));
ymsnd.irq_handler().set_inputline(m_audiocpu, 0);
ymsnd.add_route(0, "mono", 0.50);
ymsnd.add_route(1, "mono", 0.50);

OKIM6295(config, "oki", 1_Mhz_XTAL, okim6295_device::PIN7_HIGH)
.add_route(ALL_OUTPUTS, "mono", 0.60);

}

Approachability
● Idiomatic code – after

auto irq_handler() { return m_irqhandler.bind(); }
auto port_write_handler() { return m_portwritehandler.bind(); }

Approachability
● Make the most of the language

– Features make languages more expressive
– Use features where they make sense
– Don’t use features just for the sake of using them

Refactoring
● It’s difficult

– Language and compiler limitations
– Catering to all use cases
– Future-proofing
– Time-consuming in a large project

Refactoring
● Things get worse before they get better

– Supporting old and new syntax
– Clashing styles
– Not adding legacy code
– Few examples of new syntax

Refactoring
● It pays off

– Higher productivity
– Lower barriers to entry
– More contributors

Project Management
● High level and low level, nothing in between

– Setting overall direction
– Best practices
– No task assignments or priorities

Project Management
● Be prepared to make decisions

– Decisions won’t make everyone happy
– Indecision makes everyone unhappy
– Decisions need to be well reasoned
– Explain your decisions

Project Management
● Set quality standards

– Bad code is more effort to fix later
– Explain what’s wrong with submissions
– Document standards if possible

Project Management
● Your job is to make sure they can do theirs

Choosing a License
● Use an OSI- or FSF-approved license

– Written by real IP lawyers
– Widely understood
– Perks like access to tools and services

Choosing a License
● The MAME license

– “Redistributions may not be sold, nor may they be
used in a commercial product or activity.”

● Pitfalls of custom licenses
– Incompatible with other software licenses
– Unintended side-effects

Choosing a License
● Switching licenses wastes time

– Tracking down contributors
– Rewriting code that can’t be re-licensed
– Time that could be better spent productively

Promotion
● Keep people interested

– Release notes
– Progress reports
– Social media presence
– Low-effort requests

Random Advice
● Stay true to your goals
● Bigger than any one person
● You can’t finish something you don’t start
● If it stops being fun, take a step back
● Don’t lose sight of MAME’s purpose

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

