
  

More Than an Emulator
● Living documentation

– Device-based emulation
– Running original software
– Interactive debugger

● Preservation of digital heritage



  

Software is Culture
● Eligible for copyright protection
● Shared experiences
● Entertainment and storytelling medium



  

All Culture Needs to be Preserved
● Hopes and fears of a generation
● Window into a way of life
● Passing down memories
● Software is fragile



  

Dragging MAME into the 21st Century

Practicalities of a large open source
project with two decades of history

(this is not a technical talk)



  

Milestones
● Feb ’97: Multi-Pac becomes MAME
● Jun ’98: First MESS release
● Oct ’14: Source on GitHub
● May ’15: MAME absorbs MESS
● Mar ’16: GPL re-licensing completed



  

Rumours of Demise
● Systems no-one cares about
● MAME always gets slower
● Grumpy old men



  

Commit Activity
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Unique Authors
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Developers!
● MAME lives on active development
● Users follow development
● Inactive projects wither



  

Challenges
● MAME is mature

– Basic functionality is complete
– The easy stuff is done
– Decades of legacy
– Core changes are difficult



  

Challenges
● Constraints

– Working within MAME’s architecture
– Keeping up with core changes
– Single-system emulators are simpler
– MAME philosophy



  

Attractions
● Interesting challenges
● Nostalgia
● Not your day job
● Big device library



  

Scope
● MAME was exclusive

– Arcade video games only
– No gambling systems
– No low-effort bootlegs



  

Scope
● Proliferation of forks

– Duplicated effort
– Development silos



  

Scope
● Benefits of absorbing the forks

– More test cases
– Improvements benefit everyone
– Talent under one roof
– No need to choose a fork



  

Approachability
● Something for everyone

– Sourcing and dumping media
– Reporting emulation issues
– Layouts for non-video systems
– Documentation



  

Approachability
● Regular releases

– Users see progress faster
– Checkpoints for tracking regressions
– Infrequent releases are unwieldy



  

Approachability
● Public version control

– Frequent updates are easier to follow
– See changes as they happen
– Quicker community feedback



  

Approachability
● Transparent review process

– MAME had this wrong for years
– Everyone benefits from public feedback
– Tools can really help



  

Approachability
● Idiomatic code – before

static MACHINE_CONFIG_FRAGMENT( sound_2151 )
MCFG_SPEAKER_STANDARD_MONO("mono")

MCFG_YM2151_ADD("ymsnd", XTAL_3_579545MHz )
MCFG_YM2151_IRQ_HANDLER(INPUTLINE("audiocpu", 0))
MCFG_SOUND_ROUTE(0, "mono", 0.50)
MCFG_SOUND_ROUTE(1, "mono", 0.50)

MCFG_OKIM6295_ADD("oki", XTAL_1MHz, OKIM6295_PIN7_HIGH)
MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.60)

MACHINE_CONFIG_END



  

Approachability
● Idiomatic code – before

#define MCFG_YM2151_ADD(_tag, _clock) \
MCFG_DEVICE_ADD(_tag, YM2151, _clock)

#define MCFG_YM2151_IRQ_HANDLER(_devcb) \
devcb = &ym2151_device::set_irq_handler( \

*device, DEVCB_##_devcb);

#define MCFG_YM2151_PORT_WRITE_HANDLER(_devcb) \
devcb = &ym2151_device::set_port_write_handler( \

*device, DEVCB_##_devcb);



  

Approachability
● Idiomatic code – before

template <class Object>
static devcb_base &set_irq_handler(device_t &dev, Object obj) {

return downcast<ym2151_device &>(dev)
.m_irqhandler.set_callback(obj);

}

template <class Object>
static devcb_base &set_port_write_handler(device_t &dev, Object obj) {

return downcast<ym2151_device &>(dev)
.m_portwritehandler.set_callback(obj);

}



  

Approachability
● Idiomatic code – after

void dooyong_z80_state::sound_2151(machine_config &config) {
SPEAKER(config, "mono").front_center();

ym2151_device &ymsnd(YM2151(config, "ymsnd", 3.579'545_Mhz_XTAL));
ymsnd.irq_handler().set_inputline(m_audiocpu, 0);
ymsnd.add_route(0, "mono", 0.50);
ymsnd.add_route(1, "mono", 0.50);

OKIM6295(config, "oki", 1_Mhz_XTAL, okim6295_device::PIN7_HIGH)
.add_route(ALL_OUTPUTS, "mono", 0.60);

}



  

Approachability
● Idiomatic code – after

auto irq_handler() { return m_irqhandler.bind(); }
auto port_write_handler() { return m_portwritehandler.bind(); }



  

Approachability
● Make the most of the language

– Features make languages more expressive
– Use features where they make sense
– Don’t use features just for the sake of using them



  

Refactoring
● It’s difficult

– Language and compiler limitations
– Catering to all use cases
– Future-proofing
– Time-consuming in a large project



  

Refactoring
● Things get worse before they get better

– Supporting old and new syntax
– Clashing styles
– Not adding legacy code
– Few examples of new syntax



  

Refactoring
● It pays off

– Higher productivity
– Lower barriers to entry
– More contributors



  

Project Management
● High level and low level, nothing in between

– Setting overall direction
– Best practices
– No task assignments or priorities



  

Project Management
● Be prepared to make decisions

– Decisions won’t make everyone happy
– Indecision makes everyone unhappy
– Decisions need to be well reasoned
– Explain your decisions



  

Project Management
● Set quality standards

– Bad code is more effort to fix later
– Explain what’s wrong with submissions
– Document standards if possible



  

Project Management
● Your job is to make sure they can do theirs



  

Choosing a License
● Use an OSI- or FSF-approved license

– Written by real IP lawyers
– Widely understood
– Perks like access to tools and services



  

Choosing a License
● The MAME license

– “Redistributions may not be sold, nor may they be 
used in a commercial product or activity.”

● Pitfalls of custom licenses
– Incompatible with other software licenses
– Unintended side-effects



  

Choosing a License
● Switching licenses wastes time

– Tracking down contributors
– Rewriting code that can’t be re-licensed
– Time that could be better spent productively



  

Promotion
● Keep people interested

– Release notes
– Progress reports
– Social media presence
– Low-effort requests



  

Random Advice
● Stay true to your goals
● Bigger than any one person
● You can’t finish something you don’t start
● If it stops being fun, take a step back
● Don’t lose sight of MAME’s purpose
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